Fluid Dynamics

<u>Viscosity</u> (η)

- the resistance of a fluid
- ↓ viscosity = ↓ internal resistance to flow; ideal fluid behavior
- assumed negligible (unless indicated otherwise); conservation of energy in lowviscosity fluids
- Viscous drag = nonconservative force when η = 0, fluid is inviscid

SI unit: pascal-second

Pa • s =
$$\frac{N \cdot s}{m^2}$$

Laminar flow

- smooth, parallel movement of fluid
- interior layers of fluid move faster than layers closest to pipe

Poiseuille's Law:

used to find flow rate (Q)

$$Q = \frac{\pi r^4 \Delta P}{8nL}$$

(do not need to memorize this equation only relationship)

 $| \leftarrow v_2 \Delta t = s_2 \rightarrow |$

 assuming constant flow rate, radius (r) is inversely exponentially related to pressure gradient (ΔP)

Turbulent flow

- rough, disorderly
- eddies swirls of fluid forming downstream of an obstruction.
- can occur when fluid speed exceeds critical speed (v_c)

$$v_c = N_R n \rho D$$

Linear Speed

- measure of linear displacement in a given time.
- flow rate, Q (volume/time) = constant in closed system

Continuity Equation:

$$Q = v_1 A_1 = v_2 A_2$$

- \downarrow Area (A) = \uparrow linear speed of fluid (v)
 - statement of conservation of mass

Bernoulli's Equation

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$$

P = Absolute pressure in fluid below the surface:

$$P = P_o + \rho gz$$

 Dynamic pressure = flow rate (q/Q)

$$Q = (1/2) \rho v^2$$

• Static pressure = $P + \rho gh$

Used for:

Pitot Tubes

https://images.app.goo.gl/R2psuR 8u8hVBMABv9

 $-v_1 \Delta t = s_1 -$

Venturi Effect: explains changes in *fluid velocity* relative to area.

High area (low speed, high pressure)

low area (high speed, low pressure)

→ relating this to pressure gives **Bernoulli's principle**.

Archimedes' Principle

$$F_{\text{buoy}} = \rho_{\text{fluid}} g V_{\text{submerged}}$$

- Buoyant force equal to weight of displaced fluid.
 - ⇒ weight of fluid displaced < object weight → object sinks
 - ⇒ weight of fluid displaced ≥ object weight → object floats

Related Equations:

Density
$$(\rho) = \underline{m}$$
 SI unit: \underline{kg} m3

Specific gravity = $\rho_{\text{Substance}}$ ρ_{Water}

$$[\rho_{water} = 103 \text{ kg/m}3]$$

Pressure:

$$P = \frac{Force}{Area}$$
 SI unit: pascal $\frac{N}{m}$

 For static fluids of uniform density in sealed vessel:

$$P = \rho gz$$

Gauge pressure:

$$P_{\text{gauge}} = P_{\text{absolute}} - P_{\text{atm}}$$

 Measures pressure of object relative to atmospheric pressure.