Thermodynamics

States, Systems, Processes

Consider states and state processes in terms of the Ideal Gas Law:

PV = nRT

- This would include considering pressure vs volume graphs
- Work would be calculated as area under the curve

Adiabatic: P=C/VIsovolumetric: NA

Isothermal: P=nRT/V

Adiabatic: U = -W

Isothermal: U = Q

Isovolumetric: Q = -W

Newton's 1^{st} Law: $\Delta U = Q - W$

(Change in internal energy = heat added into system – work done by system)

Systems:

- Isolated: no matter or energy exchange (bomb calorimeters)
- Closed: Energy exchange only (radiators)
- Open: Energy and matter exchange (an open reaction)

Processes

- Adiabatic: no heat exchange, U=
- Isothermal: T is constant
- Isovolumetric: V is constant=no work
- Isobaric: P is constant

States are described by State Functions

Equilibrium usually measured at Standard conditions or Standard Temperature and Pressure (STP)

Standard Conditions: 298 K, 1 atm, 1 M

concentrations
STP: 273 K, 1 atm
Conversion: K = °C + 273

Equilibrium conditions will be tested on the MCAT

State Functions

- Pressure (P)
- Density (δ)
- Temperature (T)
- Volume (V)
- Enthalpy (H)
- Internal Energy (U)
- Gibbs Free Energy (G)
- Entropy (S)

Mnemonic: PAT V. HUGS

Phase Diagrams

Most relevant reactions will take place in standard conditions, so Standard enthalpy, entropy, and free energy values will be used

Terms to remember:

- Melting vs. Freezing (solid ↔ liquid)
- Sublimation vs Deposition (solid ↔ gas)
- Vaporization vs Condensation (liquid ↔ gas)

Phase diagram: https://commons.wikimedia.org/wiki/File:Phase diagram of water simplified.svg

Heat, Enthalpy, Entropy, and Gibbs Free Energy

Heat (Q) -Think of it less as 'temperature' and more as the kinetic energy of molecules. Q>0, Q<0 means energy added or removed from system, respectively

Temperature and heat are both related to the kinetic energy of a substance: heat is the exchange in energy between two substances at different temperatures.

Heat measured using calorimetry

Convection: Movement in a fluid due to heat transfer, rising of high T fluid and sinking of low T fluid (gas too)

Conduction: Transfer of heat through direct contact

Radiation: Transfer of heat though electromagnetic waves; infrared radiation

Heating Curves—measuring the heat absorbed by a compound as its T rises (may include fusion, vaporization).

Enthalpy (ΔH) – Total heat of a compound

Usually considered with regards to the formation of chemical compounds or processes with a reaction mechanism. Standard enthalpies will be provided.

Very Important equation: q = mcΔT

(looks like q = mcat!)

Q (heat) = (mass)(specific heat cal/gK)(change in temperature)

Other Equations:

 $1 \text{cm}^3 \text{ of H}_2 \text{O} = 1 \text{ mL}$

For all the energy state functions:

- A positive value means energy is added to the system
- Negative value means energy is released from system (and into surroundings)

Q=mL, m=mass, L=latent heat (cal/g)

 $\Delta H_{rxn} = \Delta H_{products} - \Delta H_{reactants}$ (kJ/mol)

 $\Delta S = Q/T (J/mol K)$

 $\Delta G = \Delta H - T\Delta S (J/mol)$

 $\Delta G_{rxn} = RTInK_{eq}$

Linear Expansion: $\Delta L = \alpha L \Delta T$ (a lot)

Entropy (ΔS) – Measure of disorder, but a more accurate definition is the measure of the dispersion of energy

- 2nd Law of Thermodynamics: Tot energy in a system never decreases, entropy is spontaneously maximized
- Reactions usually have positive entropy
- $\Delta S_{gases} > \Delta S_{liquids} > \Delta S_{solids}$

Gibbs Free Energy (ΔG) – For the MCAT, this is generally considered a measure of the 'total energy' in a system or product

Very important to determine the spontaneity of a reaction:

(+) ΔG means reaction is nonspontaneous

(—) ∆G means reaction is spontaneous

Very important: spontaneity has no bearing on the kinetics (speed) of a reaction. This can be a pitfall for some of the comprehensive kinetics/thermodynamics questions

ΔG	ΔΗ	ΔS	Spontaneous?
(+) at low T, (-) at high T	+	+	Yes, at high T
Always (-)	+	-	Never
Always (+)	-	+	Always
(-) at low T. (+) at high T	-	-	Yes, at low T

Key Takeaways: The MCAT tests understanding more than it tests the ability to plug and chug equations

Knowing units and strong dimensional analysis skills will make answering thermo questions a breeze! Many times, the questions and answers will have hints in the form of units or state functions used that will partially answer the question for you.

