MCAT Units & Constants

To Get You Started

Base Units in SI System

the kilogram (kg) for mass

the meter (m) for distance

the kelvin (K) for temperature

the mole (mol) for the amount of a substance

the ampere (A) for electric current

the second (s) for time

the candela (cd) for luminous intensity

Constants & Formulas

1 Watt/ = $1J/S = kg m^2 / s^3$

Hz = 1/sec

 $1 \text{ mL} = 1 \text{cm}^3 = 1000 \text{L} = 1 \text{m}^3$

Speed = m/s

1 atm = 760 torr = 101.3 kPa

Acc= m / s²

 $1 \text{ Pa} = 1 \text{ N/m}^2 = 1 \text{ kg/ms}^2$

F = C/V

 $1 J = 1 N m = 1 kg m^2 / s^2$

 $c = J/g^{\circ}C$

Coulombs 6.24×10¹⁸ protons

 $1V = kg m^2 / s^3 A$

1 C= 1 amp sec

(1.036×10⁻⁵ mol)

 $1A = kg m^2 / s^3 A^2$

1 hour = 3600 seconds

 $1 N = 1 kg m / s^2$

Approach:

- 1. Have I seen a problem like this before? Where?
- 2. How would I restate the problem in my own words?
- 3. What information here is most crucial and why?
- 4. Can I draw a picture to represent the information?
- 5. Is there anything else I can do to help me better understand problem?

Name	Symbol	constant	units
Speed of Light	С	3.000 x 10 ⁸	m/s
Gas Constant	R	8.314	J K*mol
			kg*m² s²*K*mol
Avogadro's #	N _A or L	6.022 x 10 ²³	1/mol
Planck's constant	h	6.626 x 10 ⁻³⁴	J*s
			kg∗m² s
Gravitational	G	6.673 x 10 ⁻¹¹	$\frac{\mathrm{Nm}^2}{\mathrm{kg}^2}$

Assess:

- 1. Do I have the correct units?
- 2. Does my answer make sense?
- 3. What was the hardest thing about this problem?
- 4. Was there a simpler way I could have solved this problem?